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Abstract 

In this study, we propose an approximation method for particular solutions of the  
nonhomogeneous second-order differential equations by truncated Legendre series. Particulary, 
the govern problem is a linear differential equation with constant coefficients. The choice of 
series solutions depends upon the complementary solutions and the approximate 
nonhomogeneous terms. An upper bound for the approximation error is formulated. Some 
examples are presented to demonstrate the validity of the proposed method. 
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Introduction 

Many problems in natural science such as physics, engineering and mathematical 
modeling are governed by differential equations (Jung et al., 2014). Solving such equations will 
lead to understanding the behaviors of the systems. Although solutions are known to be exist, 
there is an only few problems that can be solved for analytic solution. Several attempts are 
devoted to numerical method or approximation techniques to obtain the high accuracy of 
approximations (Jung et al., 2014).   

Taylor series and orthogonal functions such as Chebyshev and Legendre polynomials 
are powerful tools for functions approximations in terms of polynomials (Gulsu et al., 2006; 
Wang and Xiang, 2012; Patanarapeelert and Varnasavang, 2013). As a by-product they can be 
used for approximating the solution of ordinary differential equations. Sezer and Gulsu (2010) 
proposed a numerical method based on the hybrid Legendre and Taylor polynomials for solving 
the high-order linear differential equations. Olagunju and Olaninejum (2012) formulated a trial 
solution for nonhomogeneous differential equations where Legendre polynomials are used as 
basis functions. Recently, Jung et al. (2014) proposed the method to solutions of second-order 
differential equations by using Tau method based on Legendre operational matrix. 

In this paper, we present a method for approximating the particular solutions of 
nonhomogenous linear second-order differential equations. Rather than approximating as a 
whole we focus on in part, approximating particular solution by which the complementary 
solution is prior known.   In doing so, we transfer the original problem into an approximate one  
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by approximating the nonhomogeneous term with a truncated Legendre series expansion and 
hence assume a particular solution of the approximated problem in terms of finite Legendre 
series. Since the nonhomogeneous term and the particular solution are approximated as 
polynomials, we consider the cases in which they can be dependent on the corresponding 
complementary solution. We hypothesize that the accuracy of approximation depends on the 
highest degree of polynomial used in the series; the more number of terms are used, the more 
decreasing in error magnitude. To verify this we investigate the upper bound for the error 
between the exact solution and the estimation. 

 
Method of Finding Approximate Solution Based on Legendre Series 

Consider a nonhomogeneous linear second-order differential equation 
 
    [ ] ( ) ( ) ( ) ( )L y ay t by t cy t f t′′ ′= + + =    (1) 
 
with the initial conditions 
 

 0 0(0) , (0)y yα β′= =     (2) 

 

where 0a ≠ , b , c  are constants and ( )f t  is a continuously differentiable function up to 

order n . The general solution for (1) is given by c py y y= +  where cy  is the complementary 

solution obtained from the associated homogeneous differential equation while py is a 

particular solution. In order to find the approximation of py , we first approximate the 

nonhomogeneous term ( )f t  as the truncated Legendre series as  
 

 
0

( )
n

m m
m

f t a P
=

= ∑     (3) 

where  0 1P = ,  

1P t= ,  

[ ]1 1
1 (2 1)

1m m mP m tP mP
m+ −= + −
+

  ; 2, ,m n=   

are the Legendre polynomials and  the coefficients are denoted by  
1

1

2 1 ( ) ( )
2m m

ma f t P t dt
−

+
= ∫  

where 1 1t− ≤ ≤ . Noting for generality that even ( )f x  is defined on 1 2xτ τ≤ ≤ , we can 

transform into  1 1t− ≤ ≤  by using the relation ( )1 0 1 0
1
2

x tτ τ τ τ= − + +    (Ascher, 2008).   

We then obtain an approximated problem for equation (1) as  
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0

ˆ ˆ ˆ ˆ[ ] ( ) ( ) ( )
n

m m
m

L y ay t by t cy t a P
=

′′ ′= + + = ∑    (4) 

with the initial conditions 
 

 0 0ˆ ˆ(0) , (0)y yγ η′= = .    (5) 

 

For this problem we suppose its solution in the form ˆ ˆ ˆc py y y= + . It should be noted that the 

form of complementary solutions of equations (1) and (4) are similar. In order to solve for 
particular solution we assume that 
  

 0 1
0

ˆ ( )
n l

p i i
i

y b P AP BP
+

=

= − +∑    (6) 

 

where the unknown parameters ,l A  and B  depend on the form of complementary solution. 
The reason behind this is that the linearly independence of two solutions must be preserved 
(Rice and Do, 2012). To illustrate this clearly, we classify ,l A  and B  as follows. 
 
Case I. If there is no any term of polynomials appearing in homogeneous solution, then 
 

 0l A B= = =     (7) 

 

Case II. If there is a polynomial consisting of only constant term appearing in homogeneous 
solution, then 
 

 
2

22 2
0

( 1) (2 )!1, 0,
2 ( !)

n
m

mm
m

ml B A b
m

 
  

=

−
= = = ∑    (8) 

 

where 
2 2
n n  =  

 for 0,2,4,...n =  and 
1

2 2
n n +  =  

 for 1,3,5,...n = . 

 
Case III. If there is a polynomial of degree one appearing in homogeneous solution, then 
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2
2 2

2 2 12 2 2 1
0 0

( 1) (2 )! ( 1) (2 2)!2, ,
2 ( !) 2 !( 1)!

n n
m m

m mm m
m m

m ml A b B b
m m m

+   
      

++
= =

− − +
= = =

+∑ ∑  (9) 

 

where   
2 2

2 2
n n+ +  =  

 for 0,2,4,...n =  and  
2 1

2 2
n n+ +  =  

 for 1,3,5,...n = . 

In order to determine the coefficients ib , we substitute (6) into (4), so that  

 

 1 0 1
0 0 0 0

n l n l n l n

i i i i i i m m
i i i m

a b P b b P BP c b P AP BP a P
+ + +

= = = =

   ′′ ′ ′+ − + − − =   
   

∑ ∑ ∑ ∑ . (10) 

 

The derivatives of Legendre polynomials can be written in the form of Legendre polynomials as  
 

 2 1
0
(2 4 1) ; 0 ( 0 ; 0)

n

n n m n
m

P n m P n P n− −
=

′ = − − ≥ = ≤∑ ,  (11) 

 

 
2 1

2 2 2
0 0
(2 4 1) (2 4 4 3) .

n n m

n n m k
m k

P n m n m k P
− −

− − −
= =

′′= − − − − −∑ ∑   (12) 

 

Employing (11) and (12), we observe that equation (10) becomes the algebraic 
equation of Legendre polynomials. Finally, the values of ib  are accomplished by equating the 

corresponding coefficients of  iP   and solving the system of algebraic equations. 

 
Upper Bound for Approximation Error 

In this section, we investigate an upper bound for the error between the exact solution 
and the approximated solution obtained from the method mentioned above.  

Let ˆz y y= −  denotes the error of approximated solution, this quantity is then satisfied 
the differential equation  

 

 [ ] ( ) ( ) ( ) ( )L z az t bz t cz t E t′′ ′= + + =    (13) 

 

where 
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0 1

( ) ( )
n

m m m m
m m n

E t f t a P a P
∞

= = +

= − =∑ ∑ .   (14) 

 

We note that ( )E t  is an error for approximating nonhomogeneous term. In order to determine 
the bounds for solution of (13), we follow the theory developed in previous work (Brauer, 
1963). To be proceed, we first rewrite (13) in the form of system of first-order equations by 
letting ( )u t z=  and ( ) /v t dz dt= . The resulting system is given by 
 

 
( ) .

du v
dt
dv E t cu bv
dt a

=

− −
=

    (15) 

 

The above equations can be written in matrix notation by denoting ( ) ( )Tt u v=X  as a vector 
function. Equation (16) then becomes 
 

 ( , )d t A
dt

= = +
X f X X e     (16) 

 

where 
 

 

0 1 0
, ( )A c b E t

a a a

   
   = =
   − −   
   

e .   (17) 

 

Next, we will determine a scalar function that is bounded above the right hand side of (17). 
Since  
 

 ( , )t A≤ +f X X e     (18) 

 

where .  is a vector norm, and  
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1 1

( ) 1 1( )m m m
m n m n

E t a P t a
a a a

∞ ∞

= + = +

= ≤ ≤∑ ∑e   (19) 

 

because ( ) 1mP t ≤  [10], it follows that 

 

 
1

1( , ) m
m n

t A a
a

∞

= +

≤ + ∑f X X .   (20) 

 
Define a function  
 

 
1

1( ) m
m n

r A r a
a

ω
∞

= +

= + ∑     (21) 

 

and noting that ( ) 0r r t≡ >  is a positive function. From (20), it is true that 
 

 ( , ) ( )t ω≤f X X     (22) 

 

Solving for ( )r t  of an equation 
 

 ( )r rω′ =      (23) 

 

with (0) (0)r = X  and ( )rω  is given in (21), we have 

 

 
1

1( ) (0)
A t A t

A t
m

m n

e er t a e r
a A

− ∞

= +

 −
= +  

 
∑ .  (24) 

 

From the theory of upper bound for solutions of ordinary differential equations (Brauer, 1962), 
we can conclude that  
 

 ( ) ( )t r t≤X     (25) 
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for all t . By means of vector norm, we arrive at the main result 
 

 ˆ ( )y y r t− ≤     (26) 

 

The expression of ( )r t  can be determined explicitly following (24). The difficulty arises 

however when attempting to calculate the summation | |ma∑ . To facilitate the calculation 

some properties of truncated Legendre series expansion is introduced (Wang and Xiang, 2011). 

Since ( 2), , , , nf f f f −′ ′′
  are continuous on [ ]1,1−  and if  ( 1)

1
n

nT
f V−

−= < ∞  where 

 

 
1

2
1

( )

1T

t
dt

t

ξ
ξ

−

′
=

−
∫     (27) 

 

for some 2n ≥ , we apply the error bounds of truncated Legendre series expansion derived by 
Wang and Xiang (2011)  to get that 
 

 1

1 1 1 3 2 3 2( )
2 2 2

n
m

m n m n

Va
n m nm m m

π∞ ∞
−

= + = +

≤
− −    − − −    

    

∑ ∑


. (28) 

 

Thus, 
 

 ˆ( ) ( ) ( )y t y t ERB t− ≤     (29) 

 

where 
 

 1

1

1( ) (0)
1 3 2 3 2( )
2 2 2

A t A t
A tn

m n

Ve eERB t e r
na A m nm m m

π− ∞
−

= +

 
  −  = +   − −       − − −          

∑


      (30) 

 

with 2n ≥ , is the upper bound for approximation error as desired. 
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Examples 

Here, we provide some examples to illustrate our method presented in the previous 
section.    

 
Example 1 In this example, we find the general solution of the nonhomogeneous linear 
second order differential equation  
     

1siny y t−′′ ′− = .    (31) 
 

The complementary solution of (31) is 1 2
tc c e+ .  Employing the proposed method, we rewrite 

the nonhomogeneous term in the form of Legendre series expansions as 
 

1
0 0 1 1 2 2 3 3sin t a P a P a P a P− = + + +    (32) 

 

where 0 1 2 3
30, , 0,
8 8

a a a aπ π
= = = =  (Patanarapeelert and Varnasavang, 2013).  

From (32), the problem (31) is rewritten as 
 

0 0 1 1 2 2 3 3ˆ ˆy y a P a P a P a P′′ ′− = + + + .   (33) 

 
From case II, we have 1, 0l B= =  since the complementary solution has a constant term. 
Therefore,  
 

4
0

0
ˆ p i i

i
y b P AP

=
= −∑     (34) 

 
where  
 

2
22 20

( 1) (2 )!
2 ( !)

m

mmm

mA b
m=

−
= ∑ .   (35) 

 

After substituting (34) and (35) in (33), we have 1 2 3 4
9 41, , ,
4 56 8 56

b b b bπ π π π
= − = − = − = − . 

The expression of the particular solution (34) after rearranging terms in increasing powers of t  
is      
 

    2 3 47 33 5 5ˆ
4 32 6 64py t t t tπ π π π

= − − − − .   (36) 

 
Therefore, we finally obtain the approximate solution as 
 

 - 8 - 



The Journal of Applied Science                                                                                   Vol. 15 No. 2: 1-19 [2016] 
วารสารวทิยาศาสตรป์ระยกุต ์          doi: 10.14416/j.appsci.2016.08.001 
 

     2 3 4
1 2

7 33 5 5ˆ
4 32 6 64

ty c c e t t t tπ π π π
= + − − − − .  (37) 

 
We note that the method of undetermined coefficients is not applicable to linear equation (31) 
with such nonhomgeneous term. In addition, we could not find its particular solution by 
employing the method of variation of parameters analytically as well. Therefore, the above 
procedure can be used as alternative way to approximate the solution. 
We further illustrate the results of an upper bound for the error between the exact solution and 
the approximated solution by the given following examples.    
 
Example 2 Consider the nonhomogeneous linear second order differential equation  
 

 ( ) ty t e′′ =      (38) 

 
with the initial conditions  
 

 (0) 2, (0) 1y y′= = .    (39) 

 

We start with the approximation 
 

 0 0 1 1 2 2
te a P a P a P= + +     (40) 

 

where the coefficients of Legendre polynomials 0 1 21.1752, 1.1036, 0.3578a a a= = =  are 

obtained from the orthogonal relation 
1

1

2 1 ( )2
t

m m
ma e P t dt

−

+= ∫ . Hence, we now solve the 

problem  
 

 0 0 1 1 2 2ˆ ( )y t a P a P a P′′ = + +     (41) 

 

with the initial conditions   
 

 ˆ ˆ(0) 2, (0) 1y y′= = .    (42) 

 

Equations (41) has a complementary solution 
 

 1 2ˆcy c c t= +     (43) 
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where 1 2,c c  are arbitrary constants. 

Since there is the polynomials with degree one appeared in (43), we assume the particular 
solution for (41) as 
 

 
4

0 1
0

ˆ ( )p i i
i

y b P AP BP
=

= − +∑    (44) 

 
where  
 

 

2

2 0 2 42 2
0

1

2 1 1 32 1
0

( 1) (2 )! 1 3
2 ( !) 2 8

( 1) (2 2)! 3 .
2 !( 1)! 2

m

mm
m

m

mm
m

mA b b b b
m

mB b b b
m m

=

++
=

−
= = − +

− +
= = −

+

∑

∑
  (45) 

 

Substituting (44) in (41) and employing (12), we get 
 

 2 4 0 3 1 4 2 0 0 1 1 2 2(3 10 ) 15 35b b P b P b P a P a P a P+ + + = + + .  (46) 

 

Comparing the coefficients of ; 0,1, 2iP i = , we obtain  

 

 2 0 2 3 1 4 2
1 2 1 1, , .
3 21 15 35

b a a b a b a= − = =    (47) 

 

After rearranging, we find the particular solution (44) in the form  
 

 2 3 40 2 1 2ˆ
2 4 6 8p
a a a ay t t t = − + + 

 
.   (48) 

 

Therefore, the general solution of equation (41) is  
 

 2 3 40 2 1 2
1 2ˆ

2 4 6 8
a a a ay c c t t t t = + + − + + 

 
.   (49) 
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Under the conditions (42), the approximate solution for the original equation (38) is  
 

 2 3 4ˆ 2 0.4981 0.1839 0.0447 .y t t t t= + + + +   (50) 

 
While, the exact solution of (41) is  
 

 1 ty t e= + + .    (51) 

 

Next, we find the upper bound for the absolute error between (50) and (51) by using (30). For 

the problem (38), 1, 0a b c= = = . Therefore, 
0 1
0 0

A  
=  
 

 and 1A = . Calculating 

numerically under the tolerance of order 510− , we find that  
 

 1

3
8.2260

1 2( 2)
2

m

V
mm

π∞

=

=
− − 

 

∑  

where 
1

1 2
1

3.9775
1

teV dt
t−

= =
−

∫ .  Here, (0) 0r = . Therefore, the upper bound is  

 

 ( ) 8.2260 (1 )t tERB t e e−= −  

 

We then conclude that ˆ( ) ( ) 8.2260 (1 )t ty t y t e e−− ≤ − .  

Table 1 shows the accuracy of approximations including with errors and error bounds. The plots 
of the exact solution, the approximate one, and ˆ( ) ( )y t ERB t±  are shown in Figure 1. In this 
example we eliminate the effect of initial condition by choosing the same values as the original 
problem. However, the magnitude of errors is quite large. This may be caused by the number 
of terms used in approximation is low. We observe that order in magnitude of errors does not 
agree with the order of magnitude of errors in function approximation (see Table 2).  This 
result implies that the accuracy of approximate nonhomogeneous term does not necessarily 
guarantee the accuracy of approximate solutions.    
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Figure 1.  Plots of  ˆ ˆ, , ,y y y ERB and ŷ ERB  of Example 2. 

 
Table 1. The comparisons between the exact solution and the approximation for Example 2. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

t  y  ŷ  ˆy y  ERB  

    0 

0.2 

0.4 

0.6 

0.8 

1 

    2 

2.4214 

2.8918 

3.4221 

4.0255 

4.7183 

2 

2.2215 

2.4926 

2.8248 

3.2312 

3.7267 

  0 

0.1999 

0.3992 

0.5973 

0.7943 

0.9916 

0 

1.8213 

4.0457 

6.7627 

10.0813 

14.1346 
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Table 2. The errors between the nonhomogeneous term and the truncated Legendre series 
expansion for Example 2.  
 
 
 
 
 
           

 
 
Example 3  Consider the following differential equation  
 
 
 5 6 siny y y t′′ ′− + =     (52) 

 

with the initial conditions  
 

 
1(0) 1, (0)
2

y y′= = .    (53) 

Here, we set 
 

 
5

0
sin m m

m
t a P

=

= ∑     (54) 

 

where 0 2 4 1 3 50, 0.9035, 0.0630, 0.0010a a a a a a= = = = = − = . Therefore, we have the 

approximate problem as 
 

 0 0 1 1 2 2 3 3 4 4 5 5ˆ ˆ ˆ5 6y y y a P a P a P a P a P a P′′ ′− + = + + + + +   (55) 

 

with the initial condition  

t  te  
2

0
m m

m
a P


  

2

0

t
m m

m
e a P


   

  0 

0.2 

0.4 

0.6 

0.8 

1 

1.0000 

1.2214 

1.4918 

1.8221 

2.2255 

2.7183 

 0.9963 

1.2385 

1.5236 

1.8517 

2.2227 

2.6366 

0.0037 

0.0171 

0.0318 

0.0296 

0.0029 

0.0817 
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1ˆ ˆ(0) 1, (0)
2

y y′= = .    (56) 

 

A complementary solution for (55) is given by 
 

 2 3
1 2ˆ t t

cy c e c e= +     (57) 

 

where 1 2,c c  are arbitrary constants. 

Since there has no any polynomial term in (57), we assume the particular solution for (55) as 
 

 
5

0

ˆ p i i
i

y b P
=

=∑     (58) 

 

To find ib , we substitute (58) and use (11), (12) to (55) and then equate the coefficients of 

; 0,1,...,5iP i = , to get a linear system of equations. After some calculations, we have 

 

 

5 4 5 3 4 5
5 4 3

2 3 4 5 1 2 3 4 5
2 1

0 1 2 3 4 5
0

45 35 63, , ,
6 6 6

25 35 25 15 15 15 42, ,
6 6

5 3 5 10 5 .
6

a a b a b bb b b

a b b b a b b b bb b

a b b b b bb

+ + −
= = =

+ − + + − + −
= =

+ − + − +
=

 (59) 

 
The solution of initial value problem (55)–(56) is  
 

 

2 3
1 2 0 2 4 1 3 5

2 3 4 5
2 4 3 5 4 5

1 3 3 15ˆ
2 8 2 8

3 15 5 35 35 63
2 4 2 4 8 8

t ty c e c e b b b b b b t

b b t b b t b t b t

 = + + − + + − + 
 

   + − + − + +   
   

 (60) 

 

where  
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1 0 1 2 3 4 5

2 0 1 2 3 4 5

3 3 9 15 53
2 2 8 8 2

3 3 15 32 .
2 4 8 2

c b b b b b b

c b b b b b b

= − + + − − + +

= − − + + − −
  (61) 

 

To see how accurate the approximation is, we find the exact solution of (52)–(53). It is given 
by 
 

 2 323 7 1 1sin cos
10 5 10 10

t ty e e t t= − + + .   (62) 

 

The upper bound for the absolute error for this example can be obtained in similar way. We 

first determine 
0 1
6 5

A  
=  − 

 and 61A =  and 

1

4 2
1

cos 2.4039
1

tV dt
t−

= =
−

∫ . 

By calculating numerically under the tolerance of order 510− , we find that  
 

4

6
0.0207

1 3 5 7 2( 5)
2 2 2 2

m

V
mm m m m

π∞

=

=
−    − − − −    

    

∑ . 

 

We note that (0) 0r = . Therefore, the upper bound is  

61 610.0207( ) (1 )
61

t tERB t e e−= − . 

Thus, 61 610.0207ˆ( ) ( ) (1 )
61

t ty t y t e e−− ≤ − .  

We present the accuracy of approximations including with errors and error bounds in 
Table 3. The plots of the exact and the approximate solutions, and ˆ( ) ( )y t ERB t±  are shown 
in Figure 2. Here, we choose similar initial conditions for both problems. As opposed to previous 
example, the number of terms used in approximation is larger. This results in the small errors 
presented in approximate nonhomogeneous term (see Table 4). Also, the errors of approximate 
solution are low comparing with the previous example. 
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Figure 2.  Plots of  ˆ ˆ, , ,y y y ERB and ŷ ERB  of Example 3. 

 
 
Table 3.  The comparisons between the exact solution and the approximation for Example 3. 
 

t  y  ŷ  ˆy y  ERB  

0 

0.2 

0.4 

0.6 

0.8 

1 

1 

0.9981041 

0.6016284 

-0.6942397 

-3.8990661 

-10.9867453 

1 

0.9981039 

0.6016264 

-0.6942475 

-3.8990875 

-10.9867951 

0 

0.0000002 

0.0000020 

0.0000078 

0.0000214 

0.0000498 

0 

0.0099881 

0.0576174 

0.2847415 

1.3678025 

6.5324726 
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Table 4.  The errors between the nonhomogeneous term and the truncated Legendre series 
expansion for Example 3. 
 

t  sin t  
5

0
m m

m
a P


  

5

0
sin m m

m
t a P


   

0 

0.2 

0.4 

0.6 

0.8 

1 

0 

0.1986693 

0.3894183 

0.5646425 

0.7173561 

0.8414710 

0 

0.1986475 

0.3893906 

0.5646274 

0.7173605 

0.8415000 

0 

0.0000218 

0.0000277 

0.0000151 

0.0000044 

0.0000290 

 

 
Conclusion 

In summary, we proposed an approximation technique for solving the linear second-
order differential equation with nonhomogeneous term. The method presented here is different 
from previous works since it aims to approximate only the particular solution. It is believed that 
approximation in part may confine potentially the propagation of errors. The present method 
takes an advantage from approximating function with Legendre series by assuming series 
solution with the same degree as of approximate nonhomogeneous term. Since we are 
approximating the particular solution we improve the method by classifying the forms of series 
according to its complementary solution. This is possible in general when solving the equation 
with the traditional technique. To insure that the approximating results should not be divergent 
from the exact solution we derived the bound of approximation errors.  

The expression of error bound shows the dependency of initial conditions and the degree 
of constructed series. We observe that however the derived error bound is exponentially 
increased with t  (the independent variable). This effect dominates all other dependent factors 
if t  is large.  We argue that the reason behind this is that the method used for derivation is 
based upon the initial value problem (see Brauer (1963)). Thus, under the derived error bound, 
the approximation is locally (small interval of t ) rather than globally. Importantly, we see that 
the error bound indicates how the precise approximation depends on the number of terms in 
constructed series. In the provided examples, the error bounds are exponentially increased with 
t . However, by increasing the number of terms of series we can expect the reduction in 
magnitude of errors (see Figure 3). It is observed that if nV   in (27) is nonincreasing with n , 

the dependence on number of terms is only present by the series     
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1

1
1 3 2 3 2( )
2 2 2

m n n m nm m m

π∞

= + − −    − − −    
    

∑


  (63) 

 

which is decreased with n .   
The proposed method can be extended to the higher order of nonhomogeneous 

differential equations with constant coefficients and could be the first step of error analysis for 
the more complex problem. As mentioned, solving for analytic solution of differential equations 
is difficult even for linear nonhomogeneous problem. The method present here is as alternative, 
especially when the nonhomogeneous term is given in complex form. Nevertheless, there are 
some gaps that can be considered for the possible future work such as the derivation of error 
bounds for boundary value problems, the use of numerical interpolations for approximate 
function based on both Legendre and Chebyshev series. In addition, based on this method the 
possible extension should be the approximation for the differential equations with variable 
coefficients.     

 

 
Figure 3.  Plot of series (63) with respect to n . 
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